REFERENCES

- 1. S. Iskandarov and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 4, 106, 1968.
- 2. F. Rul'ko, ZhOKh, 32, 1695, 1962.

20 March 1969

Institute of the Chemistry of Plant Substances AS UzSSR

UDC 547.944.1

THE STRUCTURE OF ERVAMICINE

D. A. Rakhimov, V. M. Malikov, and S. Yu. Yunusov

Khimiya Prirodnykh Soedinenii, Vol. 5, No. 4, pp. 332-333, 1969

After the isolation of ervinceine [1], the total alkaloids from the epigeal part of Vinca erecta Rgl. et Schmalh. were dissolved in benzene, and the benzene solution was extracted successively with citrate-phosphate buffer solution at pH 4.5 and 2.8 and with 1 N HCl. The last fraction deposited crystals of a hydrochloride with mp 213-214° C (decomp., methanol), from which an amorphous base was obtained with R_f 0.78 in TLC on a fixed layer of silica gel (ether-chloroform, 1:1), $[\alpha]_{\rm D}^{20}$ -274.4 (c 1.4; chloroform). The hydriodide had mp 207-208° C (decomp., methanol). The UV spectrum, $\chi^{\rm C2}_{\rm H_0CH}^{\rm EOH}$ 248, 329 m μ (1g ϵ 3.89, 4.00), is characteristic for α -methyleneindoline alkaloids. IR spectrum: 1670 cm⁻¹ (NH), and 795, 860 cm⁻¹ (1,2,4-trisubstituted benzene ring). M⁺ 366 (mass spectrometry). Thus, the alkaloid has the composition and developed the formula

$$C_{19}H_{19}(=N-)$$
 (NH) (COOCH₃) (OCH₃) (=)₂.

The mass spectrum of the base, which we have called ervamicine, is similar to that of 16-methoxytabersonine [2].

On Adams hydrogenation in ethanol, ervamicine absorbs 1 mole of hydrogen and forms 6, 7-hydroervamicine, M^{\dagger} 368 (mass spectrometry). The latter was found to be identical (R_f, UV, IR, and mass spectra) with ervinceine.

The NMR spectrum of the base taken on a JNM-4H-100/100 MHz instrument in carbon tetrachloride (τ scale) showed signals at 3.06-3.82 (aromatic protons, 3H), 6.37 (singlet, COOCH₃), 6.34 (singlet, OCH₃), 1.05 (NH, singlet), and 9.42 (triplet, C-C₂H₅).

The two olefinic protons of ring D form an AB system and give a quartet with τ_A = 4.39 and τ_B = 4.47 ppm and J_{AB} = 10.0 Hz, which shows the cis arrangement of these hydrogen atoms relative to the double bond. In a comparison of some chemical properties and the NMR spectra of ervamicine and of 16-methoxytabersonine, the signals of all the protons were found to be different. This gives grounds for assuming that these alkaloids are steroisomers [2].

REFERENCES

- 1. D. A. Rakhimov, V. M. Malikov, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 5, 330, 1969 [in this issue].
 - 2. B. Pyuskyulev et al., Collection no. 3, 1289, 1967.

25 March 1969

Institute of the Chemistry of Plant Substances AS UzSSR